
DeXe Platform Contracts Code Audit and Verification by Ambisafe Inc.

July 2023

Oleksii Matiiasevych

1. INTRODUCTION. DeXe Network requested Ambisafe to perform a code audit of the DeXe
Platform contracts. The contracts in question can be identified by the following git
commit hash:

e0240228947c8664ebc01095fe9c8e8c41d6d6be

All contracts in the repo are in scope.

After the initial code audit, DeXe Network team applied a number of updates which can
be identified by the following git commit hash:

36657e92e562381597ed87258b75e744d89ddf18

Additional verification was performed after that.

2. DISCLAIMER. The code audit makes no statements or warranties about utility of the code,
safety of the code, suitability of the business model, regulatory regime for the business
model, or any other statements about fitness of the contracts for any specific purpose, or
their bugfree status.

3. EXECUTIVE SUMMARY. There are no known compiler bugs for the specified compiler
version (0.8.9), that might affect the contracts’ logic. There were 3 critical, 3 major, 14
minor, 32 informational and optimizational findings identified in the initial version of the
contracts. All the minor and above severity findings were addressed and were not found
in the final version of the code, while a few of the optimizations and notes remain
acknowledged in favor of code readability and design choices.

4. CRITICAL BUGS AND VULNERABILITIES. Three critical issues were fixed over the course of
the engagement. First one would allow users to drain the TokenSaleProposal of all the



funds (5.3). Other two would let users drain the TraderPool and TraderPoolRiskyProposal
by repeatedly calling invest/divest functions (5.28, 5.39).

5. INITIAL LINE BY LINE REVIEW. FIXED FINDINGS.

5.1. ERC721Power, line 102. Note, the addCollateral() function allows an addition of
zero amount.

5.2. DistributionProposal, line 66. Optimization, the claim() function could
excessively check own balance in case of native currency payout.

5.3. TokenSaleProposal, line 71. Critical, the vestingWithdraw() function lets users
drain the contract by providing duplicate entries in the tierIds array.

5.4. TokenSaleProposal, line 118. Minor, the buy() function first transfers the rounded
down amount of tokens to the user, then rounds down the vestingTotalAmount
which could result in vested + unvested < amountBought. Consider storing
vestingTotalAmount as saleTokenAmount - unvested. Or do not store
vestingTotalAmount at all, and calculate it on the fly each time.

5.5. TokenSaleProposal, line 134.Major, the recover() function lets users corrupt the
tier.tierInfo.tierInfoView.totalSold by providing duplicate entries in the tierIds
array if more than one tier sells the same token.

5.6. TokenSaleProposal, line 173. Minor, the getSaleTokenAmount() function could
return 0 if amount*exchangeRate < PRECISION. Consider validating the
saleTokenAmount to be greater than zero instead of exchangeRate.

5.7. TokenSaleProposal, line 348. Optimization, the _addToWhitelist() function
should read the request.tierId into a local variable once in the beginning of the
function and then use the var every time.

5.8. TokenSaleProposal, line 387. Note, the _countPrefixVestingAmount() function
could return an amount < vestingTotalAmount in some cases, restricting users
from withdrawing part of the vested tokens after full vesting period.



5.9. GovSettings, line 29. Note, the __GovSettings_init() function does not verify the
length of the proposalSettings[] which could result in not all the ExecutorTypes
being set up.

5.10. GovSettings, line 32. Optimization, the __GovSettings_init() function could use
settingsId as an increment in the for loop instead of i.

5.11. GovSettings, line 37. Note, the __GovSettings_init() function could use
_setSettings() function instead of filling up the settings mapping directly, for
consistency of SettingsChanged events.

5.12. GovSettings, line 45. Note, the __GovSettings_init() function has a special
condition for the ExecutorType.DISTRIBUTION settings, which is not enforced
in the editSettings() function.

5.13. GovValidators, line 118. Minor, the createExternalProposal() function could
create a proposal with quorum > 100%.

5.14. GovValidators, line 240. Note, the getProposalRequiredQuorum() function
duplicates the _proposalExists() code in place.

5.15. GovPool, line 173. Optimization, the createProposal() function reads the
latestProposalId variable from storage multiple times.

5.16. GovPool, line 198. Optimization, the vote() function executes the
onlyBABTHolder() modifier twice.

5.17. GovPool, line 318. Optimization, the unlock() function executes the
onlyBABTHolder() modifier twice.

5.18. ShrinkableArray, line 31. Note, if the crop() function is used to increase the
length of the array, then it could expose previously shrunk entries.

5.19. GovPoolCreate, line 192. Optimization, the
_handleDataForValidatorBalanceProposal() function excessively iterates over
the data array which always has a single entry.



5.20. GovPoolStaking, line 128.Major, the _recalculateStakingState() function
allows a reentrancy if the rewardToken is a native currency. The reentrancy
could be used to receive the same reward multiple times.

5.21. GovPoolStaking, line 148. Note, the _getMicropoolPendingRewards() function
calculates rewardsDeviation with very poor precision. If it is intended then
consider adding an explanation.

5.22. GovUserKeeperView, line 34. Optimization, the votingPower() function calls
userKeeper.tokenAddress() on every iteration of the loop.

5.23. GovUserKeeperView, line 42. Optimization, the nftAddress() function calls
userKeeper.tokenAddress() on every iteration of the loop.

5.24. UniswapV2PathFinder, line 61. Note, the _getPathWithPrice() function should
return withProvidedPath false in case of zero amount.

5.25. TraderPoolCommission, line 100.Major, the distributeCommission() function
could be self-sandwiched to force it to buy DEXE at an inflated price, resulting in
a stolen commission.

5.26. TraderPoolInvest, line 118. Minor, the investInitial() function could mint zero LP
in case there is totalBase already present in the pool before the invest.

5.27. TraderPoolPrice, line 45. Optimization, the
getNormalizedPoolPriceAndPositions() function excessively copies
openPositions into positionTokens. Could just use the openPositions
everywhere.

5.28. TraderPool, line 173. Critical, the divest() function if called in the next block
after the invest() will produce profit to the user letting them drain the pool.



5.29. TraderPoolInvestProposal, line 56. Minor, the changeProposalRestrictions()
function allows modification of a zero proposal. The requirement should also
check that proposalId > 0.

5.30. TraderPoolInvestProposal, line 101. Minor, the invest() function allows
modification of a zero proposal. The requirement should also check that
proposalId > 0.

5.31. TraderPoolInvestProposal, line 128. Minor, the divest() function allows
modification of a zero proposal. The requirement should also check that
proposalId > 0.

5.32. TraderPoolInvestProposal, line 160. Minor, the withdraw() function allows
modification of a zero proposal. The requirement should also check that
proposalId > 0.

5.33. TraderPoolInvestProposal, line 181. Minor, the supply() function allows
modification of a zero proposal. The requirement should also check that
proposalId > 0.

5.34. TraderPoolInvestProposal, line 201. Minor, the
convertInvestedBaseToDividends() function allows modification of a zero
proposal. The requirement should also check that proposalId > 0.

5.35. TraderPoolRiskyProposal, line 60. Minor, the changeProposalRestrictions()
function allows modification of a zero proposal. The requirement should also
check that proposalId > 0.

5.36. TraderPoolRiskyProposal, line 123. Minor, the invest() function allows
modification of a zero proposal. The requirement should also check that
proposalId > 0.

5.37. TraderPoolRiskyProposal, line 183. Minor, the divest() function allows
modification of a zero proposal. The requirement should also check that
proposalId > 0.

5.38. TraderPoolRiskyProposal, line 209. Minor, the exchange() function allows
modification of a zero proposal. The requirement should also check that
proposalId > 0.

5.39. TraderPoolRiskyProposal, line 423. Critical, the _divestActivePortfolio()
function will produce profit if called right after invest().



5.40. UserRegistry, line 32. Optimization, the agreeToPrivacyPolicy() function reads
documentHash value from storage multiple times.

5.41. UserRegistry, line 53. Note, the agreed() function will return true if the user
agrees but the document hash is changed afterwards.

6. VERIFICATION LINE BY LINE REVIEW. ACKNOWLEDGED FINDINGS.

6.1. ERC721Multiplier, line 38. Optimization, the lock() function reads the
_tokens[tokenId] value from storage multiple times.

6.2. ERC721Multiplier, line 67. Optimization, the getExtraRewards() function reads
the _tokens[latestLockedTokenId] value from storage multiple times.

6.3. ERC721Multiplier, line 80. Optimization, the getCurrentMultiplier() function
reads the _tokens[latestLockedTokenId] value from storage multiple times.

6.4. ERC721Power, line 39. Note, the totalPower will always be outdated as long as
there are not fully collateralized tokens that didn't perform
recalculateNftPower() in the current block.

6.5. ERC721Power, line 126. Optimization, the removeCollateral() function reads the
nftInfos[tokenId] value from storage multiple times.

6.6. TokenSaleProposal, line 82. Optimization, the vestingWithdraw() function
updates the purchase.latestVestingWithdraw variable value, which is only used
for information purposes.

6.7. GovValidators, line 126. Note, proposals could be created with quorum set to
zero, which will allow any validator to pass the proposal.

6.8. GovPool, line 75. Note, the deployerBABTid variable is only set and never
changes, also not used in other contracts. Consider removing or making it
immutable.



6.9. IGovSettings, line 36. Note, the quorum is used in an unconventional way.
Usually quorum indicates the minimum number of participants to make voting
possible, then a decision is made on the majority of the votes. Here the quorum
meaning is the number (part) of votes required for the passing of the proposal, so
if quorum is set to 10% then if 90% of participants are against, they would not be
able to defeat the vote, which will be passed by another 10%.

6.10. GovUserKeeperView, line 86. Note, the nftVotingPower() function could
produce nftPower > sum(perNftPower[]).

6.11. TraderPoolDivest, line 136. Optimization, the _checkUserBalance() function
denies users from doing invest and divest in the same block, but that is not needed
if divest does not produce immediate profit. It doesn't protect from the sandwich
attacks, because instead of wrapping the victim's invest() into invest-divest, the
attacker would just wrap the swap itself. User is already providing a minimum
expected return as a means of sandwich protection.

Oleksii Matiiasevych


